
ECS 189A Sublinear Algorithms for Big Data Fall 2024

Lecture 2: Concentration Inequalities

Lecturer: Jasper Lee Scribe: Alan Buckser, David Gee

1 Lecture Schedule

Lectures 2-3 are concentration inequalities.
Lectures 4-8 are doing specific problems.
Lectures 9-13 are property testing on discrete distributions (basically statistics).
The rest of course is streaming algorithms, where the sublinear resource is memory while
reading data, not time.

2 Intuition

Over the course of this week, we will utilize randomness, see how to analyze and it, and
hopefully by the end of the week see that randomness is well-behaved. ”Aggregate behavior
of lots of independent processes is typically well-behaved” (at least to some extent).

Consider (X1, . . . , Xn) ← D ∈ R independent random variables drawn from a random
distributionD with finite mean µ and variance σ2. Consider the sample mean X̄n = 1

n

∑
Xi,

which aggregates the behavior of the Xi. There are two well-known theorems that describe
this aggregate behavior.

• Law of Large Numbers (LLN): X̄n → µ a.s. (almost surely)

• Central Limit Theorem (CLT): X̄n → N
(
µ, σ

2

n

)

(Lesson 1: Summary Measures of Data 2.1 - 9 - UT Health)
The diagram above shows how 1

n factor in the variance of the Gaussian approximation
becomes spikier as n increases. We want to quantitatively describe how much this spikiness
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exists for the actual X̄n, that is to describe how concentrated the probability mass of X̄n is
around its mean. To do this, we want to prove some concentration inequality of the form

P(|X̄n − µ| > ϵ) ≤ small(ϵ, n).

We know a few such bounds.

Proposition 2.1 (Chebyshev’s inequality). Consider a real valued random variable Y with
finite mean µ and standard deviation σ.

P(|Y − µ| ≥ a) ≤ σ2

a

We can prove Chebyshev’s inequality through Markov’s inequality.

Proposition 2.2 (Markov’s inequality). For a non-negative random variable X,

P(X ≥ a) ≤ E(X)

a

To prove Chebyshev’s inequality with Markov’s inequality, we take X = |Y − µ|2.

Proposition 2.3 (Applying Chebyshev’s inequality to X̄n). Let X̄n be the sample mean of
n independent identically drawn (iid) random variables Xi, each with mean µ and variation
σ2. Then by Chebyshev’s inequality,

P(|X̄n − µ| ≥ ϵ) ≤ σ2

nϵ
.

To gauge the effectiveness of these inequalities, we compare them to the Gaussian ap-
proximation from the Central Limit Theorem. The Gaussian Probability Density Function

(PDF) of N
(
µ, σ

2

n

)
is

(√
n

2πσ2

)
e−

nϵ2

2σ2 . Then the Cumulative Density Function (CDF) is

Θ(e−
nϵ2

2σ2 ) = e−Θn. Comparing this to the bound of Chebyshev’s (which was Θ(1/n)), we
can see the concentration bound of Chebyshev’s is very weak compared to the sample com-
plexity of the Cumulative Density Function (linear decay vs exponential decay). We then
want to find a stronger probability bound that matches the Cumulative Density Function’s
decay rate.

To do this, we first consider other moments.

Proposition 2.4 (Beefing up Chebyshev’s for higher moments). For every k ∈ N,

P(|Y − µ| ≥ a) ≤ E(|Y − µ|k)
ak

.

The proof of this is in homework 0. (Note that it had |Y − µ|k ≥ ak in the probability,
but |Y − µ| ≥ a is equivalent to this.)

Corollary 2.5. P(|Y − µ| ≥ a) ≤ inf
k∈N

(
E(|Y−µ|k)

ak

)
In theory, this is a tight upper bound. However, direct applications to choose the best

k in such a way to minimize the right hand side is unclear. Therefore, we will look into
Chernoff Bounds, which we will be using for the rest of the quarter.
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3 Chernoff Bound for Bernoulli Random Variables

We start with the observation that et·x = 1+ tx+ t2x2

2! + t3x3

3! + . . . . Then by the linearity of
expectation, applying the moment generating function of Y at t gives usMY (t) = EY (e

tY ) =

1 + tE(Y ) + t2E(Y 2)
2! + t3E(Y 3)

3! + . . . .
We will use MY (t) instead of Chebyshev’s inequality to prove the desired concentration

bound.

Lemma 2.6. For any r.v. Y ∈ R (with finite moment generating function (mgf)), t > 0,

P(Y ≥ b) = P (etY ≥ etb)

≤ E(etY )
etb

(by Markov)

≤ inf
t>0

E(etY )
etb

P(Y ≤ b) = P(etY ≤ etb)

≤ E(etY )

etb

≤ inf
t>0

E(etY )
etb

To apply this to X̄n, we let Y = X̄n = 1
n

∑
Xi and b = µ+ ϵ. There are then two more

steps we must take to use this:

• We need to upper bound the MGF E(etY ) = (E(et
X
n ))n. (The proof of this equality

is in homework 0.)

• We then need to compute this infimum (which requires finding which t minimizes
this).

Theorem 2.7 (Chernoff bound for Poisson Trials1). Let Xi ← Ber(pi) be independent
random variables. Then X =

∑
Xi is the sample sum, which describes aggregate behavior,

and µ =
∑

pi = EX. Note that because X is the sum not the average, µ contains the n
from earlier.

1. P(X ≥ (1 + δ)µ) ≤
(

eδ

(1+δ)1+δ

)µ

2. For δ ∈ (0, 1), P(X ≥ (1 + δ)µ) ≤ e−µδ2/3.

Note that 2 is a simpler but weaker version of 1.

Proof. Step 1: Upper bound the Moment Generating Function (mgf)

1Reminder that Poisson Trials are a series of trials where the probability of success varies from trial to
trial.
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E[etXi ] = pie
t + (1− pi)

= 1 + pi(e
t − 1)

≤ epi(e
t−1) (when

∑
pi = µ)

≤
∏
i

epi(e
t−1) = eµ(e

t−1)

Step 2: Apply the Chernoff bound and compute infimum:

P (X ≥ (1 + δ)µ) ≤ inf
t>0

E(etX)

et(1+δ)µ
(apply Lemma 2.6)

≤ inf
t>0

e(e
t−1)µ

et(1+δ)µ
apply step 1

=

(
inf
t>0

e(e
t−1)−t(1+δ)

)µ

We minimize et − t(1 + δ) by setting its derivative equal to 0 and solving for t: d
dt(e

t −
(1 + δ)t) = et − (1 + δ) = 0, so t = ln(1 + δ).

Then

P (X ≥ (1 + δ)µ) ≤
(
inf
t>0

e(e
t−1)−t(1+δ)

)µ

≤ eδ

(1 + δ)1+δ
.

This completes the proof of part 1.
For part 2, observe (via Wolfram Alpha) that eδ

(1+δ)1+δ ≤ e−δ2/3 for δ ∈ (0, 1]. This is

visualized in Desmos below.
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Theorem 2.8 (Theorem 2.7 but lower bound (L.B.)). For any κ ∈ (0, 1),

1. P(X ≤ (1− κ)µ) ≤ e−κ

(1−κ)1−κ

2. P(X ≤ (1− κ)µ) ≤ e−µκ2/2.

Note the 2 in the denominator of the exponent, not 3 as in Theorem 2.7.

Combining the previous two theorems, we get a 2-sided tail bound.

Theorem 2.9 (2-sided Chernoff bound for Poisson Trials). Consider the same setup as
Theorem 2.7 and Theorem 2.8, holding κ ∈ (0, 1). Then P(|X − µ| ≥ κµ) ≤ 2e−µκ2/3

What if we don’t know µ, but only know µ+ ≥ µ? We can still derive some tail bounds.

Corollary 2.10. For n ≥ µ+ ≥ µ, κ ∈ (0, 1), we have P(X ≥ (1 + κ)µ+) ≤ e−µ+κ2/3.

Proof. Let X =
∑

Xi, Xi ∼ Ber(pi).
Consider Yi ← Ber(qi) s.t. qi ≥ pi and

∑
qi = µ+, and let Y =

∑
Yi.

Then

P(X ≥ (1 + κ)µ+) ≤ P(Y ≥ (1 + κ)µ+)

≤ e−µ+κ2/3 (Theorem 2.7)

4 Applications

We can use this Chernoff bound to improve the success probability of some algorithms with
constant success probability by running those algorithms repeatedly and then somehow
combining the results of the runs into some consensus result.

4.1 Application 1

Consider a decision algorithm A (outputs 0 or 1) that succeeds with probability ≥ 2
3 . We

want to construct another algorithm A′ that succeeds with probability 1− δ.

Algorithm 1 A′ is an algorithm that boosts the capability of a decision algorithm A
1. Run A n times.

2. Take the majority vote.
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4.2 Analysis of Algorithm 1 (figure out n)

Let Ei be an indicator for whether the ith run got the wrong answer.

E(Ei) = P(A wrong) ≤ 1

3

P(A′ fails) = P
(∑

Ei ≥
n

2

)
≤ e−n/3( 1

2)
2
/3 (Corollary 2.10)

= e−Θ(n)

We want the probability A′ fails to be ≤ δ.

e+Θ(n) ≥ 1

δ

n ≥ Θ

(
log

1

δ

)
4.3 Application 2

Consider an algorithm B that outputs a real number in [⋆ − ϵ, ⋆ + ϵ] (with the goal to
output ⋆) with probability ≥ 2

3 . We want to construct another algorithm B′ that succeeds
at outputting a real number in [⋆− ϵ, ⋆+ ϵ] with probability 1− δ.

Algorithm 2 B′ is an algorithm that boosts the capability of an estimation algorithm B
1. Run B n times.

2. Take the median.

We take the median instead of the mean because there are no guarantees about outliers.
Note this is a generalization of Algorithm 1 because the median of 0 or 1 is just majority
vote.

4.4 Analysis of Algorithm 2 (figure out n)

Let Ei be an indicator for whether the ith run got the wrong answer (outputs less than
⋆− ϵ).

E(Ei) = P(B wrong) ≤ 1

3

P(B′ fails) = P
(∑

Ei ≥
n

2

)
≤ e−n/3( 1

2)
2
/3 (Corollary 2.10)

= e−Θ(n)

We want the probability B′ fails to be ≤ δ.
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e+Θ(n) ≥ 1

δ

n ≥ Θ

(
log

1

δ

)
Note that this complexity is totally ϵ agnostic.

5 A General Heuristic

An algorithm with query complexity q(δ) should aim for q(δ) ≤ O
(
q
(
1
3

)
· log 1

δ

)
. Note the

log 1
δ blow up isn’t always tight.
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